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Abstract
We explore the reflection–transmission quantum Yang–Baxter equations,
arising in factorized scattering theory of integrable models with impurities.
The physical origin of these equations is clarified and three general families
of solutions are described in detail. Explicit representatives of each family are
also displayed. These results allow us to establish, for the first time, a direct
relationship with the different previous works on the subject and make evident
the advantages of the reflection–transmission algebra as a universal approach
to integrable systems with impurities.

PACS numbers: 11.10.Kk, 11.55.Ds

1. Introduction

Quantum mechanics and quantum field theory with point-like impurities have recently attracted
much attention in relation to the rapid progress of condensed matter physics with defects.
Integrable systems with impurities represent in this context a relevant testing ground for the
basic theoretical ideas and also have some direct physical applications.

In the present paper, we are concerned with those universal features of integrable
systems with impurities in 1+1 spacetime dimensions, which are captured by the reflection–
transmission quantum Yang–Baxter equations (QYBEs), following factorized scattering
theory. Our first goal below is to describe the origin and the present status of these equations.
In the next section, we sketch the derivation of the reflection–transmission QYBEs from first
principles, namely physical unitarity and the reflection (boundary) QYBE, familiar from the
case of a purely reflecting boundary. Afterwards we briefly describe the concept of reflection–
transmission (RT) algebra, which is based on the reflection–transmission QYBEs and has been
introduced in [1]. Section 2 collects and presents, from a slightly different angle, those results
of [1] which are needed in the present paper for describing the scattering data. This issue
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is crucial for the applications and represents the second goal of this work. In section 3 we
establish three general families of admissible scattering data, discussing their basic properties.
Among others, these families are the simplest and also look the most natural ones from the
physical point of view. Section 4 is devoted to some concrete examples, which illustrate the
general setting. The results of section 3 allow us to compare, for the first time, the existing
two approaches to factorized scattering with impurities, displaying the advantages of the RT
algebra framework. This comparison is done in the last section, which also presents our
conclusions and indicates some further developments in the subject.

2. Reflection–transmission QYBEs

The method of factorized scattering [2] is a powerful tool for studying both the mathematical
structure and the physical properties of integrable quantum systems in 1+1 dimensions. The
main ingredient of this method is the two-body scattering matrix{

Sβ1β2
α1α2

(χ1, χ2) : α1, . . . , β2 = 1, . . . , N;χ1, χ2 ∈ R
}
. (2.1)

Here N is the number of internal degrees of freedom, whereas χ ∈ R parametrizes the
dispersion relation of the asymptotic particles. In order to construct from (2.1) a consistent
total scattering operator, the two-body matrix S must satisfy

S12(χ1, χ2)S13(χ1, χ3)S23(χ2, χ3) = S23(χ2, χ3)S13(χ1, χ3)S12(χ1, χ2), (2.2)

which is the celebrated quantum Yang–Baxter equation (QYBE). One can associate [3–11]
with S an algebra AS with identity 1, whose generators {a∗α(χ), aα(χ)} satisfy

aα1(χ1)aα2(χ2) − Sβ2β1
α2α1

(χ2, χ1)aβ2(χ2)aβ1(χ1) = 0, (2.3)

a∗α1(χ1)a
∗α2(χ2) − a∗β2(χ2)a

∗β1(χ1)Sα2α1
β2β1

(χ2, χ1) = 0, (2.4)

aα1(χ1)a
∗α2(χ2) − a∗β2(χ2)Sβ1α2

α1β2
(χ1, χ2)aβ1(χ1) = 2πδ(χ1 − χ2)1 δα2

α1
. (2.5)

The elements {a∗α(χ), aα(χ)} are interpreted as creators and annihilators of asymptotic
particles. The QYBE (2.2) ensures the associativity of AS and, applying (2.3) twice, one
deduces the consistency relation

S12(χ1, χ2)S21(χ2, χ1) = I ⊗ I, (2.6)

known as unitarity. Moreover, requiring that the mapping

I : a∗α(χ) �→ aα(χ), I : aα(χ) �→ a∗α(χ), (2.7)

generate an involution in AS (i.e., I extends as an antilinear antihomomorphism on AS), one
gets the so-called Hermitian analyticity condition

S†
12(χ1, χ2) = S21(χ2, χ1), (2.8)

where the dagger stands for the Hermitian conjugation3. We stress that by combining (2.6)
and (2.8), which are assumed throughout the paper, one deduces the physical unitarity

S12(χ1, χ2)S†
12(χ1, χ2) = I ⊗ I (2.9)

of the two-body scattering matrix. Following the already standard terminology, in what follows
we refer to AS as the Zamolodchikov–Faddeev (ZF) algebra.

The above framework has been successfully generalized [13–18] to the case when a purely
reflecting boundary is present in the space. Describing the process of particle reflection from

3 More general involutions in AS and the relative Hermitian analyticity conditions have been studied in [12].
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the boundary by a reflection matrix Rβ
α(χ), Cherednik [13] discovered in the early 1980s that

R must satisfy the following reflection QYBE,

S12(χ1, χ2)R1(χ1)S21(χ2,−χ1)R2(χ2) = R2(χ2)S12(χ1,−χ2)R1(χ1)S21(−χ2,−χ1),

(2.10)

in order to have consistent factorized scattering. In analogy with (2.6), (2.8) one also requires
unitarity

R(χ)R(−χ) = I (2.11)

and Hermitian analyticity

R†(χ) = R(−χ), (2.12)

which imply the physical unitarity

R(χ)R†(χ) = I. (2.13)

Let us mention in passing that the ZF algebra AS has a counterpart BS in the boundary case
[19]. Instead of describing BS now, we will obtain it later on as a special case of the more
general structure, discussed below.

It is quite natural at this stage to consider instead of the purely reflecting boundary an
impurity (defect), which both reflects and transmits. In addition to Rβ

α(χ), one will also have
in this case a transmission matrix T β

α (χ). Quantum mechanical potential scattering theory
(see, e.g., [20]) suggests substituting (2.11) by

T (χ)T (χ) + R(χ)R(−χ) = I, (2.14)

T (χ)R(χ) + R(χ)T (−χ) = 0, (2.15)

where T satisfies the Hermitian analyticity condition

T (χ) = T †(χ). (2.16)

Due to (2.12), (2.16), T (χ)T (χ) and R(χ)R(−χ) are non-negative Hermitian matrices which
are simultaneously diagonalizable because of (2.14). The corresponding eigenvalues λi(χ)

and µi(χ) satisfy

0 � λi(χ) � 1, 0 � µi(χ) � 1, λi(χ) + µi(χ) = 1, i = 1, . . . , N. (2.17)

Obviously, non-trivial transmission occurs if and only if µi(χ) < 1 (or equivalently λi(χ) > 0)
for some i = 1, . . . , N .

Following [21, 1], our goal now is to uncover the algebraic structure which models the
mechanism of reflection and transmission in integrable systems with impurities. It is natural
to expect that in addition to Cherednik’s reflection QYBE (2.10), R and T satisfy some
transmission and reflection–transmission QYBEs as well. The most direct way to derive
these equations is to solve the unitarity constraints (2.14), (2.15), expressing T in terms of
R, and use afterwards (2.10). Solving (2.14), we consider below the positive square root√

I − R(χ)R(−χ) of the non-negative Hermitian matrix I − R(χ)R(−χ). More precisely,
in the basis in which I−R(χ)R(−χ) is diagonal we take diagonal

√
I − R(χ)R(−χ), whose

elements are the positive square roots
√

1 − λi . The latter are well defined in view of (2.17)
and we set

T (χ) = τ(χ)
√

I − R(χ)R(−χ), (2.18)

where the τ -function obeys

τ(χ) = τ(χ), τ (χ)2 = 1, τ (−χ) = −τ(χ), (2.19)
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following from (2.14)–(2.16). If one assumes in addition that τ is continuous for χ �= 0, one
finds that

τ(χ) = ±ε(χ), (2.20)

with ε being the sign function. Adopting the representation (2.18) and the reflection QYBE
(2.10), one can prove [1] the following statement.

Proposition. Let R and T satisfy Hermitian analyticity (2.12, 2.16), unitarity (2.14, 2.15)
and the reflection QYBE (2.10). Then T defined by (2.18) and R obey the transmission QYBE

S12(χ1, χ2)T1(χ1)S21(χ2, χ1)T2(χ2) = T2(χ2)S12(χ1, χ2)T1(χ1)S21(χ2, χ1) (2.21)

and the reflection–transmission QYBE

S12(χ1, χ2)T1(χ1)S21(χ2, χ1)R2(χ2) = R2(χ2)S12(χ1,−χ2)T1(χ1)S21(−χ2, χ1) (2.22)

as well.

Remark. The precise determination of the square root we are taking in (2.18) is essential.
The point is that I − R(χ)R(−χ) has in general infinitely many square roots—a standard
phenomenon [22, 23] in matrix theory. Let us consider, for instance, the square roots of the
form

T̃ (χ) = U(χ)T (χ)U(χ)−1, (2.23)

where T is given by (2.18) and U(χ) is some invertible matrix obeying

U(χ)R(±χ) = εR(±χ)U(−χ) with ε = ±1. (2.24)

Then one can show that {R, T̃ } also satisfy relations (2.10), (2.14), (2.15) and (2.21), (2.22),
but now with S replaced by

S̃12(χ1, χ2) = U1(χ1)U2(χ2)S12(χ1, χ2)U1(χ1)
−1U2(χ2)

−1. (2.25)

Note that S̃ is unitary and obeys the Yang–Baxter equation. If U(χ) is in addition unitary
(U(χ)† = U(χ)−1), T̃ satisfies (2.16) as well. Thus we get essentially the same RT algebra,
S̃ being related to S by the ‘gauge’ transformation (2.25).

Other types [22, 23] of square roots obey more complicated ‘twisted’ versions of equations
(2.21) and (2.22). Postponing the study of the latter to the future, we focus in this paper on
the subset of roots satisfying (2.21) and (2.22). The above proposition simply states that T ,
corresponding to the positive square root of I − R(χ)R(−χ), belongs to this subset.

Equations (2.21) and (2.22) have the same structure as (2.10), except for some sign
changes in the arguments of S with obvious kinematical interpretation. They are essential
for the reconstruction [1] of the reflection–transmission (RT) algebra CS—the analogue of AS
when impurities are present. It turns out that in addition to {a∗α(χ), aα(χ)}, CS involves 2N2

defect generators
{
tβα (χ), rβ

α (χ)
}
, which describe the particle interaction with the impurity

and modify the right-hand side of the exchange relation (2.5) as follows:

aα1(χ1)a
∗α2(χ2) − a∗β2(χ2)Sβ1α2

α1β2
(χ1, χ2)aβ1(χ1)

= 2πδ(χ1 − χ2)
[
δα2
α1

1 + tβ2
α1

(χ1)
]

+ 2πδ(χ1 + χ2)r
α2
α1

(χ1). (2.26)

Relations (2.3), (2.4) remain invariant. Finally, for defining CS one must add the exchange
relations among

{
tβα (χ), rβ

α (χ)
}

themselves and with {a∗α(χ), aα(χ)}. Since these relations
will be of no use in this paper, we omit them, referring, for the explicit form of the complete set
of constraints imposed on the generators of CS , to [1]. The boundary algebra BS , mentioned
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above, is obtained from CS by setting tβα (χ) = 0. The interplay between the three algebras
AS ,BS and CS has been investigated in [24, 25].

CS is an infinite algebra and from its formal definition it is not obvious at all that it has an
operator realization. For this reason, the Fock representation F(CS) has been constructed in
[1] explicitly in terms of (generally unbounded) operators acting on a suitable dense domain of
a Hilbert space. In the construction of F(CS) one needs an involution in CS , which is obtained
by extending (2.7) to the reflection and transmission generators according to

I : rβ
α (χ) �→ rα

β (−χ), I : tβα (χ) �→ tαβ (χ). (2.27)

Hermitian analyticity (2.12), (2.16) ensures the consistency of this extension. We would also
like to recall that

{
tβα (χ), rβ

α (χ)
}

condense in the vacuum state 
 ∈ F(CS), i.e.,〈
tβα (χ)

〉



= T β
α (χ),

〈
rβ
α (χ)

〉



= Rβ
α(χ). (2.28)

This direct relationship between reflection–transmission generators and amplitudes is crucial
for the physical interpretation.

The Fock representation F(CS) is useful in several respects. From the scattering data
{S,R, T } one can reconstruct [1] in F(CS) the total scattering operator, which is unitary as
expected. Remarkably enough, F(CS) also applies in the construction of off-shell interacting
quantum fields. An instructive example in this respect is the non-linear Schrödinger (NLS)
model (the non-relativistic ϕ4-theory) with a point-like impurity in 1+1 dimensions. This
system is investigated in [26, 27], where the exact off-shell operator solution is constructed
in terms of the representation F(CS) of an appropriate RT algebra CS . Recently, this solution
has been generalized [28] to the case of the GL(N)-invariant NLS model, where inequivalent
Fock representations F(CS) implement a mechanism of spontaneous symmetry breaking.

Let us mention finally that CS also admits finite temperature representations. In contrast
to the Fock vacuum, the cyclic state of such representations is not annihilated by aα(χ) and
models a thermal bath, keeping the system in equilibrium at fixed (inverse) temperature β. A
finite temperature representation of CS is introduced in [29], where some applications to the
statistical mechanics of systems with impurities are also discussed.

Summarizing, the RT algebra admissible scattering data {S,R, T } must satisfy the QYBEs
(2.2), (2.10), (2.21), (2.22), unitarity (2.6), (2.14), (2.15) and Hermitian analyticity (2.8),
(2.12), (2.16). The relevant issue at this point is the classification of admissible triplets. This
is a hard theoretical problem, which has not yet been solved even in the case of the QYBE
(2.2) alone. Fortunately, however, some classes of admissible scattering data {S,R, T } are
known. They are the subject of our discussion in the next sections.

3. RT algebra admissible data {S, R, T }
Let us fix first of all the physical setting. We will study a system with a single impurity in
R. Since the impurity divides R into two disconnected parts R±, we take N = 2n and split
the index α as follows, α = (ξ, i). Here ξ = ± indicates the half-line where the asymptotic
particle is created or annihilated and i = 1, . . . , n labels the ‘isotopic’ type. We emphasize
that the results of the present paper are valid for any dispersion relation

E = E(χ), p = p(χ), (3.1)

between the particle energy E and momentum p. In particular, it is instructive to keep in mind
the conventional relativistic

E(χ) = m cosh(χ), p(χ) = m sinh(χ), (3.2)
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and non-relativistic

E(χ) = mχ2

2
+ U, p(χ) = mχ, (3.3)

relations, with m being the particle mass and U some constant. We observe that Lorentz
and Galilean transformations of the vector (E, p) are implemented in both (3.2) and (3.3) by
translations χ �→ χ + α. Therefore the scattering matrix S is Lorentz (Galilean) invariant
provided that it depends on χ1 and χ2 only through the difference χ1 − χ2.

We focus in this section on block-diagonal S-matrices

S(χ1, χ2) =




S++(χ1, χ2) 0 0 0
0 S+−(χ1, χ2) 0 0
0 0 S−+(χ1, χ2) 0
0 0 0 S−−(χ1, χ2)


 , (3.4)

each block being an n2 × n2 matrix in the isotopic space. The QYBE for S generates eight
equations for its blocks. One has

S++
12 (χ1, χ2)S

++
13 (χ1, χ3)S

++
23 (χ2, χ3) = S++

23 (χ2, χ3)S
++
13 (χ1, χ3)S

++
12 (χ1, χ2), (3.5)

S++
12 (χ1, χ2)S

+−
13 (χ1, χ3)S

+−
23 (χ2, χ3) = S+−

23 (χ2, χ3)S
+−
13 (χ1, χ3)S

++
12 (χ1, χ2), (3.6)

S+−
12 (χ1, χ2)S

++
13 (χ1, χ3)S

−+
23 (χ2, χ3) = S−+

23 (χ2, χ3)S
++
13 (χ1, χ3)S

+−
12 (χ1, χ2), (3.7)

S+−
12 (χ1, χ2)S

+−
13 (χ1, χ3)S

−−
23 (χ2, χ3) = S−−

23 (χ2, χ3)S
+−
13 (χ1, χ3)S

+−
12 (χ1, χ2), (3.8)

the remaining four equations following from (3.5)–(3.8) with the exchange + ↔ −. We will
call the latter the mirror counterparts of (3.5)–(3.8). All of these equations have the structure
of a QYBE. We stress, however, that apart from (3.5) and its mirror counterpart, the other
four equations involve different matrices in the isotopic space and are therefore not genuine
QYBEs. Similar equations appear in the context of the quartic algebras introduced by Freidel
and Maillet [30].

Taking R and T of the form

R(χ) =
(

R+(χ) 0
0 R−(χ)

)
, T (χ) =

(
0 T +(χ)

T −(χ) 0

)
, (3.9)

Hermitian analyticity (2.12), (2.16) and unitarity (2.14), (2.15) imply

[R±]†(χ) = R±(−χ), [T +]†(χ) = T −(χ), (3.10)

and

T ±(χ)T ∓(χ) + R±(χ)R±(−χ) = I, (3.11)

T ±(χ)R∓(χ) + R±(χ)T ±(−χ) = 0, (3.12)

respectively. Moreover, from the QYBEs (2.10), (2.21), (2.22) one infers

S++
12 (χ1, χ2)R

+
1 (χ1)S

++
21 (χ2,−χ1)R

+
2 (χ2) = R+

2 (χ2)S
++
12 (χ1,−χ2)R

+
1 (χ1)S

++
21 (−χ2,−χ1),

(3.13)

S+−
12 (χ1, χ2)R

+
1 (χ1)S

−+
21 (χ2,−χ1)R

−
2 (χ2) = R−

2 (χ2)S
+−
12 (χ1,−χ2)R

+
1 (χ1)S

−+
21 (−χ2,−χ1),

(3.14)

S++
12 (χ1, χ2)T

+
1 (χ1)S

+−
21 (χ2, χ1)T

+
2 (χ2) = T +

2 (χ2)S
+−
12 (χ1, χ2)T

+
1 (χ1)S

−−
21 (χ2, χ1), (3.15)
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S+−
12 (χ1, χ2)T

+
1 (χ1)S

−−
21 (χ2, χ1)T

−
2 (χ2) = T −

2 (χ2)S
++
12 (χ1, χ2)T

+
1 (χ1)S

+−
21 (χ2, χ1), (3.16)

S++
12 (χ1, χ2)T

+
1 (χ1)S

+−
21 (χ2, χ1)R

+
2 (χ2) = R+

2 (χ2)S
++
12 (χ1,−χ2)T

+
1 (χ1)S

+−
21 (−χ2, χ1), (3.17)

S+−
12 (χ1, χ2)T

+
1 (χ1)S

−−
21 (χ2, χ1)R

−
2 (χ2) = R−

2 (χ2)S
+−
12 (χ1,−χ2)T

+
1 (χ1)S

−−
21 (−χ2, χ1)

(3.18)

and their mirror analogues obtained by + ↔ − in (3.13)–(3.18). Some solutions of the above
equations are described in the next section.

In order to keep the discussion as simple as possible, we concentrated above on triplets
{S,R, T } of the form (3.4), (3.9), but more general admissible scattering data can be analysed
along the same lines.

4. Some families of scattering data

Different classes of solutions of equations (3.5)–(3.8) determine different families of
admissible scattering data. We concentrate on three of them, which proved to be fundamental in
the understanding of the physical content of RT algebras. Indeed, the type I family answers the
long-standing question of the relationship between RT algebras and the approach to impurities
in integrable systems followed in [31–33]. It shows that the RT algebra framework is more
general and reproduces the content of [31–33] as a very special case. This is at the heart of
the discussion of the next section. Our concern with the type II family is to exhibit a case
where one can implement Lorentz invariance in the bulk scattering matrix, keeping non-trivial
transmission. After presenting the general family, we show an explicit example where this is
realized. Finally, the type III family is an important class of data since it involves the first
example of interacting, exactly solvable and integrable quantum field model with impurity
[26–28].

We turn now to the detailed description of families I–III.

(i) Type I scattering data are determined by

S+−(χ1, χ2) = S−+(χ1, χ2) = I,

S++(χ1, χ2) = S(χ1, χ2), S−−(χ1, χ2) = S̃(χ1, χ2),
(4.1)

where S and S̃ are in general two different solutions of the QYBE. Bulk scattering matrices
of type (4.1) appear in [34], where the so-called ‘folding trick’ for describing reflecting and
transmitting impurities is attempted. It is instructive to see what are the implications of
equations (3.13)–(3.18) and their mirror counterparts on R and T . One finds the following
reflection,

S12(χ1, χ2)R
+
1 (χ1)S21(χ2,−χ1)R

+
2 (χ2) = R+

2 (χ2)S12(χ1,−χ2)R
+
1 (χ1)S21(−χ2,−χ1), (4.2)

S̃12(χ1, χ2)R
−
1 (χ1)S̃21(χ2,−χ1)R

−
2 (χ2) = R−

2 (χ2)S̃12(χ1,−χ2)R
−
1 (χ1)S̃21(−χ2,−χ1),

(4.3)

transmission

T +
1 (χ1)S̃21(χ2, χ1)T

−
2 (χ2) = T −

2 (χ2)S12(χ1, χ2)T
+

1 (χ1), (4.4)

S12(χ1, χ2)T
+

1 (χ1)T
+

2 (χ2) = T +
2 (χ2)T

+
1 (χ1)S̃21(χ2, χ1), (4.5)

S̃12(χ1, χ2)T
−

1 (χ1)T
−

2 (χ2) = T −
2 (χ2)T

−
1 (χ1)S21(χ2, χ1), (4.6)
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and reflection–transmission equations

S12(χ1, χ2)T
+

1 (χ1)R
+
2 (χ2) = R+

2 (χ2)S12(χ1,−χ2)T
+

1 (χ1), (4.7)

T +
1 (χ1)S̃21(χ2, χ1)R

−
2 (χ2) = R−

2 (χ2)T
+

1 (χ1)S̃21(−χ2, χ1), (4.8)

S̃12(χ1, χ2)T
−

1 (χ1)R
−
2 (χ2) = R−

2 (χ2)S̃12(χ1,−χ2)T
−

1 (χ1), (4.9)

T −
1 (χ1)S21(χ2, χ1)R

+
2 (χ2) = R+

2 (χ2)T
−

1 (χ1)S21(−χ2, χ1). (4.10)

Note finally that for invertible T ± equations (4.7)–(4.10) are equivalent to

S12(χ1, χ2)R
+
2 (χ2) = R+

2 (χ2)S12(χ1,−χ2), (4.11)

S̃12(χ1, χ2)R
−
2 (χ2) = R−

2 (χ2)S̃12(χ1,−χ2). (4.12)

Type I scattering data are remarkable because equations (4.2)–(4.10) represent a meeting
point between the existing approaches to factorized scattering with impurities and allow us to
compare them (see section 5).

Explicit type I solutions. An example [21] is given by the GL(n)-invariant scattering matrices

S12(χ1, χ2) = S̃21(χ2, χ1) = [s(χ1) − s(χ2)]I ⊗ I − igP12

s(χ1) − s(χ2) + ig
, g ∈ R, (4.13)

where P12 is the standard flip operator and s is an even real-valued function. In this case, the
complete classification of reflection and transmission matrices is given by

R±(χ) = cos[θ(χ)] exp[ip(χ) ± in(χ)]I, (4.14)

T ±(χ) = sin[θ(χ)] exp[±iq(χ) ± in(χ)]U±1, (4.15)

where U is a unitary matrix (U−1 = U †), q is even and θ, p and n are odd real-valued functions.
The parity of s implies that S is not Lorentz (Galilean) invariant. According to [35], this is a
general feature of type I solutions, following from (4.11), (4.12).

(ii) Type II scattering data are characterized by setting

S++(χ1, χ2) = S+−(χ1, χ2) = S−+(χ1, χ2) = S−−(χ1, χ2) = S(χ1, χ2), (4.16)

where S obeys the QYBE. As a consequence, equations (3.5)–(3.8) are also satisfied and one
is left with equations (3.13)–(3.18) and their mirror counterparts. A general class of solutions
of all these equations is given by the following matrices,

R±(χ) = cos[θ(χ)] exp[ip±(χ)]B(χ), (4.17)

T ±(χ) = sin[θ(χ)] exp[±iq(χ)]I, (4.18)

where θ, p± and q are odd real-valued functions and B is a solution of the reflection QYBE
relative to S and satisfies equations (2.11) and (2.12). This general procedure for deriving RT
algebra scattering data {S,R, T } from purely reflecting data {S,B} is very attractive because
of the large amount of existing results concerning the doublet {S,B}.
Explicit type II solutions. Taking, for instance,

S12(χ1, χ2) = (χ1 − χ2)I ⊗ I − igP12

χ1 − χ2 + ig
, g ∈ R, (4.19)
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the general solution of (3.13)–(3.18) can be parametrized according to

R±(χ) = cos[θ(χ)] exp[ip(χ) ± in(χ)]
I + iaχUEU †

1 + iaχ
, a ∈ R, (4.20)

T ±(χ) = sin[θ(χ)] exp[±iq(χ) ± in(χ)]I, (4.21)

where E is a diagonal matrix which squares to I and U, θ, p, q and n have the properties fixed
in point (i).

The striking feature of type II data, which is manifest in the example (4.19)–(4.21), is the
coexistence of non-trivial transmission with non-constant Lorentz (Galilean) invariant bulk
scattering matrix. This is clearly possible because the data violate (4.7)–(4.10), in spite of the
fact that all (3.5)–(3.18) are respected.

(iii) Type III scattering data are obtained by taking

S++(χ1, χ2) = S+−(χ1,−χ2) = S−+(−χ1, χ2) = S−−(−χ1,−χ2) = S(χ1, χ2), (4.22)

where S is a solution of the QYBE. The signs of the arguments in (4.22) are crucial for
satisfying (3.6)–(3.8) and their mirror images. For deriving R and T one can proceed with
the idea in point (ii). Take a solution B of the reflection QYBE relative to S and obeying
equations (2.11) and (2.12) from the case of pure reflection. Then, using the properties of the
previously introduced θ, p and q functions, one can easily verify that

R±(χ) = cos[θ(χ)] exp[ip(χ)]B(±χ), (4.23)

T ±(χ) = sin[θ(χ)] exp[±iq(χ)]B(±χ), (4.24)

satisfy (2.12), (2.14)–(2.16), all (3.13)–(3.18) and their mirror counterparts.
Type III scattering data are inspired by the NLS model with point-like impurity, which has

non-trivial bulk scattering but is nevertheless exactly solvable [26–28]. For the time being it
is unique with these properties and provides therefore a valuable test for the whole RT algebra
framework. Since the NLS model is well known to capture many of the universal properties
of integrable system, we strongly believe that type III solutions are also relevant in a more
general context.

Explicit type III solutions. As already mentioned, the NLS model provides an instructive
example. The relative scattering data are parametrized by (4.22)–(4.24) with S defined by
(4.19) and B given by [36]

B(χ) = exp[in(χ)]
I + iaχUEU †

1 + iaχ
, a ∈ R, (4.25)

where U and n are defined as above. Because of (4.22), S is not Lorentz (Galilean) invariant
in spite of the fact that S preserves this symmetry. We refer to [26–28] for more details.

5. Remarks and conclusions

As already mentioned, the results of the present paper allow us to establish a direct relationship
between the RT algebra framework and the approach previously developed in [31–33].
Extending his idea about purely reflecting boundaries (mirrors in his terminology), Cherednik
introduced in [31, 32] the concept of purely transmitting defects (glasses). These ideas have
been later independently generalized for impurities which both reflect and transmit by Delfino,
Mussardo and Simonetti (DMS) in [33]. The scattering data of the DMS approach consist of a
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bulk scattering matrix S and right (left) reflection and transmission matrices R+ (R−) and T +

(T −). As expected, S must satisfy the QYBE. Remarkably enough, the consistency relations
imposed in [33] on R± and T ±, precisely coincide with the special case (4.2)–(4.10) of type I
scattering data, provided that

S̃12(χ1, χ2) = S21(χ2, χ1), (5.1)

which, as easily verified, solves the QYBE as well. We conclude therefore that the systems
discussed in [33] are fully described by type I data in the RT algebra framework. RT algebras
are, however, significantly more general in the sense that they allow for a larger set of scattering
data, still leading to a unitary scattering operator [1]. In fact, both type II and type III solutions
are not covered by the DMS approach. This is why the physical example of the NLS model with
impurity [26–28] cannot be treated along the lines of [33]: the corresponding scattering data
satisfy the RT algebra reflection–transmission QYBE, but do not respect the DMS consistency
conditions.

Summarizing, the concept of RT algebra has a richer structure and thus opens new
possibilities. Among others, we would like to mention the type II solutions with both Lorentz
(Galilean) invariant non-constant bulk scattering matrix and non-vanishing transmission
matrix, which are forbidden [35] in the framework of [33]. It will be interesting in this
respect to construct exactly solvable models, possessing such scattering data. Some recent
developments in model-building with impurities can be found in [37–40].

Let us remark also that the scattering data discussed above, although essential for fixing
the situation with respect to previous works and important because of their connection to
physical situations, do not correspond to the most general ones. Indeed, in equation (3.4) the
S-matrix is taken of block-diagonal form and the possibility of including non-diagonal parts
needs further study.

In conclusion, the RT algebra approach to integrable systems with impurities is based on
the reflection–transmission QYBEs (2.10), (2.21), (2.22). Keeping in mind that (2.21), (2.22)
are deeply related to (2.10) by physical unitarity, this beautiful and compact set of equations
is in our opinion extremely natural and deserves additional investigation.
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